
Hardware-Software Embedded Face Recognition 
System 

 

M.J. Avedillo 

IMSE-CNM 
(CSIC/Univ. Sevilla) 
c/Americo Vespucio 

 41092-Sevilla, Spain 

avedillo@imse-
cnm.csic.es 

A. Barriga 

IMSE-CNM 
(CSIC/Univ. Sevilla) 
c/Americo Vespucio 

 41092-Sevilla, Spain 

barriga@imse-
cnm.csic.es  

L. Acasandrei 

IMSE-CNM 
(CSIC/Univ. Sevilla) 
c/Americo Vespucio 

 41092-Sevilla, Spain 

laurentiu@imse-
cnm.csic.es 

J.M. Calahorro 

ETSII 

Univ. Sevilla 
a/ Reina Mercedes s/n 
 41012-Sevilla, Spain 

 

ABSTRACT 
This paper describes the design and implementation of a hardware-software embedded system for face 
recognition applications in images and/or videos. The system has hardware components to speed up the face 
detection and recognition stages. It is a system suitable for applications requiring real-time, due that the response 
times are deterministic and bounded. The system is based on a previous implementation that had accelerated the 
image capturing process, and the face detection. This paper will focuses in the face recognition acceleration. 
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1. INTRODUCTION 
This communication presents the design of an 
embedded system to accelerate the recognition of 
faces in images and/or videos. A recognition system 
consists of four steps: 1. Face detection to detect if 
there is a face in the image (it provides the location 
and size of the face in the image); 2. Face alignment 
to locate the position of the face and, using geometric 
transformations, normalizes it with respect to 
geometric properties, such as size and pose, and 
photometric such as lighting; 3. Feature extraction to 
provide a feature vector with information to 
distinguish faces from different individuals according 
to geometric or photometric variations; 4. 
Recognition step in which the extracted feature 
vector is compared with the vectors in a database.  

The system (Fig. 1) receives data from an image 
sensor (camera). Each frame is stored in internal 
memory and is processed by the system. The 
processing performed by the recognition algorithm 
requires two components: a software application and 
the hardware accelerators. The software application 
runs on a processor, and realizes the initialization and 
control of the hardware, as well as the recognition 
algorithms. The hardware accelerators can accelerate 

those tasks that constitute the "bottleneck" of the 
recognition algorithm. Thus, the proposed system 
(Fig. 1) is a hardware-software solution, which 
includes hardware accelerators to implement the 
most computationally expensive part of the face 
recognition algorithms: capturing images from the 
camera, processing for face detection and recognition 
algorithm acceleration. This paper focuses on the 
description of the Face Recognition Acceleration. 

Figure 1. Block diagram of the embedded system 

2. HARDWARE ACCELERATOR 
DESIGN 
The face recognition algorithms implemented require 
matrix product operations which constitute the 
"bottleneck" of the system, limiting the operation 
speed. So it was decided to implement this part in 
hardware. The design of the hardware accelerator has 
been carried out using the high level synthesis tool 
from Xilinx Vivado-HLS [Xil14]. Vivado-HLS 
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generates an RTL description starting from a C/C++ 
algorithm level description. It realizes the scheduling 
and the resource allocation in order to map the 
algorithm to hardware. It also generates a description 
as IP module so that it can be used as a peripheral of 
a processor.  

This methodology allows the designer to start the 
design of the system to be implemented in hardware 
from high-level descriptions. This means that 
algorithmic descriptions are made in a high-level 
programming language (in our case C++). Vivado-
HLS takes as input the high level description and is 
able of generating a circuit that implements the 
desired algorithm. The designer can set restrictions, 
using directives (pragmas), on latency, throughput or 
hardware resources. As we will see, this 
methodology allows for exploration of the design 
space (due to automation), and design optimization 
through the application of directives. 

Specification 
The multiplication of the row vector containing the 
information of the input image by the principal 
component matrix (generated in the training stage 
and stored in the database) is computationally 
expensive. For this reason, it was decided to design a 
circuit to perform this operation.  

The hardware block multiplies two matrices of fixed 
point numbers. The first matrix has one row and as 
many columns as the number of pixels of the image. 
That is, its size is 1*DIM1. The dimension of the 
second matrix, B, is DIM1* DIM2, where DIM2is the 
number of principal components. The elements of the 
matrices use a 32 bits signed fixed-point 
representation, with 16 bits for the fractional part. 
This is given by the type of data used in the software 
application that it aims to accelerate.  

The accelerator works in streaming mode, so it 
receives and sends data sequentially. There is only 
one port for receiving the two operand matrices. This 
is determined by the architecture requirements of the 
hardware platform, which has been designed to 
optimize data transfer between the processing system 
and the accelerator. The operating frequency of the 
system is 100 MHz. 

Description  
Figure 2 shows the description in C++ language. The 
accelerator function is the top function and it is the 
function to be synthesized using Vivado-HLS. In this 
top function, interfaces for the hardware module are 
configured and the function that encapsulates the 
functionality of the hardware block 
(accelerator_core) is called. 

The pragmas with the directives HLS INTERFACE 
and HLS RESOURCE are responsible for managing 
the sending and receiving of data arrays through the 

AXI buses. The first two associate FIFO 
communications protocols to the input and output 
ports to meet the interface requirements of the block. 
The other three pragmas add the required adapters in 
order to connect the module to an AXI4Lite bus for 
control, and to an AXIStream for data transfer. 
Finally, the function accelerator_core is called and 
the multiplication is performed. 

In function accelerator_core, the first pair of nested 
loops models the storing of the first array in internal 
memory (array a). Next, the system stores the first 
column of the second array (first principal 
component) in internal memory (array b) and, then, 
the multiplication a by b is carried out. That is, it 
calculates the first element of the resulting array and 
stores it in internal memory (array out). The 
procedure is repeated for each column of the second 
matrix. Finally, the loop labeled converter describes 
the sending of the elements of the resulting matrix. 

 

Figure 2. C++ algorithm description. 

void accelerator(AXI_VAL in_stream[num.pix + num.pix 
* num.comp], AXI_VAL out_stream[num.comp]) { 
  
#pragma HLS INTERFACE ap_fifo port=in_stream  
#pragma HLS INTERFACE ap_fifo port=out_stream  
#pragma HLS RESOURCE variable=in_stream core=AXIS 
metadata="‐bus_bundle INPUT_STREAM"  
#pragma HLS RESOURCE variable=out_stream core=AXIS 
metadata="‐bus_bundle OUTPUT_STREAM"  
#pragma HLS RESOURCE variable=return core=AXI4LiteS 
metadata="‐bus_bundle CONTROL_BUS"  
 
accelerator_core<ap_fixed<32, 16>, num.pix, 
num.comp, 4, 5, 5>(in_stream,out_stream);  
return;  
} 
 
template<typename T, int DIM, int DIM2, int U, int 
TI, int TD>  
void accelerator_core(AXI_VAL in_stream[DIM + DIM * 
DIM2], 
  
AXI_VAL out_stream[DIM2]) {  
#pragma HLS INTERFACE ap_fifo port=in_stream  
#pragma HLS INTERFACE ap_fifo port=out_stream  
T a[UNO][DIM];  
T b[DIM][UNO];  
T out[UNO][DIM2];  
assert(sizeof(T) * 8 == 32);  
for (int i = 0; i < UNO; i++)  
  readA_int: for (int j = 0; j < DIM; j++) {  
                  int k = i * DIM + j;  
                  a[i][j] = read_stream<T, U, 
                      TI,TD>(in_stream[k]); }  
 
for (int i = 0; i < DIM2; i++) {  
  read_B_int: for (int j = 0; j < DIM; j++) {  
                   int k = j + DIM * (i + 1);  
                   b[j][0] = read_stream<T,U, 
                     TI, TD>(in_stream[k]); }  
  T sum = 0;  
  Multiplier: for (int id = 0; id<DIM; ++id){  
                sum += a[0][id] * b[id][0]; }  
  out[0][i] = sum; }  
 
converter:for (int j = 0; j < DIM2; j++) {  
out_stream[j] = write_stream<T, U, TI,      
             TD>(out[0][j], j == (DIM2 ‐ 1)); }  
return; } 



AXI_VAL is a structure which represents the sending 
of data through the AXI bus.  

The initial description has been validated in Vivado-
HLS environment by running various functional 
tests. Obtained results have been checked against 
those of the multiplication in the original software 
application. 

Synthesis 
Once it has been verified that the software 
description of the multiplication algorithm works 
properly, the next step is to obtain an RTL 
implementation. This requires synthesizing the C++ 
description. 

Three different solutions have been generated. Each 
of them with different optimization directives 
applied. The accelerator is optimized using pipeline. 
Table I summarizes the obtained results. The results 
are for an accelerator module with DIM1=320 and 
DIM2=160 on a Zynq-7020device. 

 Latency 
(cycles) 

BRAM DSP FF LUT 

Sol1 564644 3 4 294 316 
Sol2 512966 3 4 306 365 
Sol3 104646 3 4 271 305 

Table 1. Synthesis results  

Solution 1 corresponds to the synthesis of the C++ 
description without applying any directive. That is, 
this solution does not include any optimization. In 
Solution 2, pipeline directives are applied to all the 
loops, except the one in which the multiplication is 
performed (loop labeled Multiplier). Solution 3 is the 
most optimized one since it applies the optimizations 
of previous solution, but also applies pipeline to the 
multiplication loop. Precisely this is the loop causing 
the bottleneck in the matrix multiplication algorithm. 

It is noted that the three solutions are similar in terms 
of used resources. No differences are observed, as 
expected, in the number of memory blocks and 
DSPs. The differences in terms of latency (in cycles) 
are significant. Solution 2 slightly improves Solution 
1. For Solution 3, which apply pipeline to the 
calculation loop, latency is significantly lower than in 
Solutions 1 and 2. 

Furthermore, concerning the use of hardware 
resources, it is observed that Solution 2 requires 
slightly more LUTs and flip-flops. This is due to the 
inclusion of pipeline stages which increases the 
number of required circuit elements. However, it is 
noted that Solution 3 requires less LUTs and flip-
flops. The reason is that, although more pipeline is 
added, the synthesis tool has achieved a better 
optimization of the resulting hardware. 

Figure 3 shows the latency, measured in clock cycles 
for each of the three solutions. The impact of the use 
of directives in the system performance is graphically 
observed. 

 
Figure 3. Response time of each implementation. 

3. FACE RECOGNITION  SYSTEM 
DESIGN 
Once a Pcore containing the description of the 
hardware accelerator for facial recognition has been 
generated with Vivado-HLS, the next step is the 
design of a hardware platform incorporating it as 
peripheral and the development of a software 
application which makes use of it.  

The system has been implemented in the Xilinx 
ZedBoard development board, which incorporates a 
Zynq-7000 SoC device. The hardware platform 
consists of five components: the ARM processor, the 
AXI buses, a timer, a DMA controller and the IP 
accelerator module. Figure 4 outlines the architecture 
of the system. 

The AXI buses are responsible of the communication 
between the various components of the circuit. The 
ARM processor, in the PS in Figure 4, runs the 
software part of the face recognition system. It sends 
the data to the hardware accelerator. In order to 
configure the processor, it is needed to enable the 
S_AXI_ACP interface to communicate with the bus 
for sending and receiving data. 

The timer is used to make performance analysis of 
the proposed system. Specifically, it is used to 
measure the number of clock cycles consumed by the 
accelerator module, in order to compare it with the 
number of cycles without using accelerator. 

The DMA is responsible of the communication 
between the PS and the IP accelerator module. It 
provides the input matrices to the hardware 
accelerator and receives the resulting matrix from it. 
Also it must make this data available to the processor 
so that it continues its execution. The DMA operates 
in burst mode. To reduce the memory access time, 
the maximum number of data to be transmitted in 
each burst has been set to 256 Bytes. 

The starting point for the design of the embedded 
system is the OpenCV’s baseline face 
detection/recognition application [Ope10]. The 
OpenCV baseline face recognition application was 
modified in order to adapt it to a standalone 
embedded face recognition system. We have 
considered that the majority of embedded 
environments are capable of running C applications 



with or without operating system (OS) support. This 
means that the resulting application code has to be 
compatible to C compilers and, at the same time it 
should be platform independent.     

 
Figure 4. Hardware platform 

Another consideration made is the fact that most of 
the SoC have no floating point support. Because of 
this, the developed application uses integer 
operations instead of floating point operations in 
order to preserve the generality of the application for 
the embedded system world. Additionally other 
modifications were made to accelerate the 
algorithms. Finally, the part of the software 
application related to the matrices multiplication, 
needed for projecting the image, has been replaced. 
This calculation is performed by the IP accelerator 
module, so it has been necessary to develop different 
functions to work directly with the system 
peripherals (DMA and the IP module).  

Once the IP module has completed the execution and 
the DMA has transferred the result of the 
multiplication, the processor continues running the 
software application. 

4. FACE RECOGNITION SYSTEM 
EVALUATION 
To validate the developed system and to evaluate its 
performance, different tests have been carried out. 
Specifically, two types of tests have been made, one 
with an all-software recognition system, which does 
not include hardware accelerator, and the other with 
the system that includes the hardware accelerator. 
The three implementations of the hardware 
accelerator described in Section 2 have been tested to 
experimentally evaluate how optimizations affect the 
final result.  

We have used two image databases containing 
images of different sizes in order to check the 
acceleration in relation to the size of the matrices to 
be multiplied. One database is the AT&T face 
databases [Att02] (resolution of 92×112 pixels). In 
AT&T database there are 10 grayscale images for 
each of the 40 individuals who compose it. The 

second database is Faces94 [Spa94] (resolution of 
180×200 pixels). It contains 3040 color images of 
faces divided into 20 images for each of the 152 
individuals who compose it.  

Tests were carried out on four types of systems: the 
purely software embedded face recognition system 
and the three hardware platforms with accelerator, as 
mentioned previously. These three solutions are the 
hardware acceleration module without optimization 
(not including pipeline stages), the module that 
includes pipeline stages in all loops except the 
multiplication one, and the module including pipeline 
in all loops. 

Figure 5 shows the results obtained for Faces94 
database. We can see the impact produced when 
inserting pipeline on the accelerator, which makes 
this operation even faster. For the small images 
(ATT), the multiplication is about 11 times faster, 
and for the large images (Faces94) it is 17 times 
faster. 

 
Figure 5. Acceleration measures (in clock cycles) 

5. CONCLUSIONS 
This communication described an embedded system 
that accelerates the face recognition process in 
images or videos. The implemented face 
identification system is suitable for applications 
requiring real time because the time response is 
deterministic. 
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