
Hardware-Software Embedded Face Recognition
System

M.J. Avedillo

IMSE-CNM
(CSIC/Univ. Sevilla)
c/Americo Vespucio

 41092-Sevilla, Spain

avedillo@imse-
cnm.csic.es

A. Barriga

IMSE-CNM
(CSIC/Univ. Sevilla)
c/Americo Vespucio

 41092-Sevilla, Spain

barriga@imse-
cnm.csic.es

L. Acasandrei

IMSE-CNM
(CSIC/Univ. Sevilla)
c/Americo Vespucio

 41092-Sevilla, Spain

laurentiu@imse-
cnm.csic.es

J.M. Calahorro

ETSII

Univ. Sevilla
a/ Reina Mercedes s/n
 41012-Sevilla, Spain

ABSTRACT
This paper describes the design and implementation of a hardware-software embedded system for face
recognition applications in images and/or videos. The system has hardware components to speed up the face
detection and recognition stages. It is a system suitable for applications requiring real-time, due that the response
times are deterministic and bounded. The system is based on a previous implementation that had accelerated the
image capturing process, and the face detection. This paper will focuses in the face recognition acceleration.

Keywords
Hardware-software codesign, embedded system, face recognition, FPGA implementations, high level synthesis

1. INTRODUCTION
This communication presents the design of an
embedded system to accelerate the recognition of
faces in images and/or videos. A recognition system
consists of four steps: 1. Face detection to detect if
there is a face in the image (it provides the location
and size of the face in the image); 2. Face alignment
to locate the position of the face and, using geometric
transformations, normalizes it with respect to
geometric properties, such as size and pose, and
photometric such as lighting; 3. Feature extraction to
provide a feature vector with information to
distinguish faces from different individuals according
to geometric or photometric variations; 4.
Recognition step in which the extracted feature
vector is compared with the vectors in a database.

The system (Fig. 1) receives data from an image
sensor (camera). Each frame is stored in internal
memory and is processed by the system. The
processing performed by the recognition algorithm
requires two components: a software application and
the hardware accelerators. The software application
runs on a processor, and realizes the initialization and
control of the hardware, as well as the recognition
algorithms. The hardware accelerators can accelerate

those tasks that constitute the "bottleneck" of the
recognition algorithm. Thus, the proposed system
(Fig. 1) is a hardware-software solution, which
includes hardware accelerators to implement the
most computationally expensive part of the face
recognition algorithms: capturing images from the
camera, processing for face detection and recognition
algorithm acceleration. This paper focuses on the
description of the Face Recognition Acceleration.

Figure 1. Block diagram of the embedded system

2. HARDWARE ACCELERATOR
DESIGN
The face recognition algorithms implemented require
matrix product operations which constitute the
"bottleneck" of the system, limiting the operation
speed. So it was decided to implement this part in
hardware. The design of the hardware accelerator has
been carried out using the high level synthesis tool
from Xilinx Vivado-HLS [Xil14]. Vivado-HLS

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

generates an RTL description starting from a C/C++
algorithm level description. It realizes the scheduling
and the resource allocation in order to map the
algorithm to hardware. It also generates a description
as IP module so that it can be used as a peripheral of
a processor.

This methodology allows the designer to start the
design of the system to be implemented in hardware
from high-level descriptions. This means that
algorithmic descriptions are made in a high-level
programming language (in our case C++). Vivado-
HLS takes as input the high level description and is
able of generating a circuit that implements the
desired algorithm. The designer can set restrictions,
using directives (pragmas), on latency, throughput or
hardware resources. As we will see, this
methodology allows for exploration of the design
space (due to automation), and design optimization
through the application of directives.

Specification
The multiplication of the row vector containing the
information of the input image by the principal
component matrix (generated in the training stage
and stored in the database) is computationally
expensive. For this reason, it was decided to design a
circuit to perform this operation.

The hardware block multiplies two matrices of fixed
point numbers. The first matrix has one row and as
many columns as the number of pixels of the image.
That is, its size is 1*DIM1. The dimension of the
second matrix, B, is DIM1* DIM2, where DIM2is the
number of principal components. The elements of the
matrices use a 32 bits signed fixed-point
representation, with 16 bits for the fractional part.
This is given by the type of data used in the software
application that it aims to accelerate.

The accelerator works in streaming mode, so it
receives and sends data sequentially. There is only
one port for receiving the two operand matrices. This
is determined by the architecture requirements of the
hardware platform, which has been designed to
optimize data transfer between the processing system
and the accelerator. The operating frequency of the
system is 100 MHz.

Description
Figure 2 shows the description in C++ language. The
accelerator function is the top function and it is the
function to be synthesized using Vivado-HLS. In this
top function, interfaces for the hardware module are
configured and the function that encapsulates the
functionality of the hardware block
(accelerator_core) is called.

The pragmas with the directives HLS INTERFACE
and HLS RESOURCE are responsible for managing
the sending and receiving of data arrays through the

AXI buses. The first two associate FIFO
communications protocols to the input and output
ports to meet the interface requirements of the block.
The other three pragmas add the required adapters in
order to connect the module to an AXI4Lite bus for
control, and to an AXIStream for data transfer.
Finally, the function accelerator_core is called and
the multiplication is performed.

In function accelerator_core, the first pair of nested
loops models the storing of the first array in internal
memory (array a). Next, the system stores the first
column of the second array (first principal
component) in internal memory (array b) and, then,
the multiplication a by b is carried out. That is, it
calculates the first element of the resulting array and
stores it in internal memory (array out). The
procedure is repeated for each column of the second
matrix. Finally, the loop labeled converter describes
the sending of the elements of the resulting matrix.

Figure 2. C++ algorithm description.

void accelerator(AXI_VAL in_stream[num.pix + num.pix
* num.comp], AXI_VAL out_stream[num.comp]) {

#pragma HLS INTERFACE ap_fifo port=in_stream
#pragma HLS INTERFACE ap_fifo port=out_stream
#pragma HLS RESOURCE variable=in_stream core=AXIS
metadata="‐bus_bundle INPUT_STREAM"
#pragma HLS RESOURCE variable=out_stream core=AXIS
metadata="‐bus_bundle OUTPUT_STREAM"
#pragma HLS RESOURCE variable=return core=AXI4LiteS
metadata="‐bus_bundle CONTROL_BUS"

accelerator_core<ap_fixed<32, 16>, num.pix,
num.comp, 4, 5, 5>(in_stream,out_stream);
return;
}

template<typename T, int DIM, int DIM2, int U, int
TI, int TD>
void accelerator_core(AXI_VAL in_stream[DIM + DIM *
DIM2],

AXI_VAL out_stream[DIM2]) {
#pragma HLS INTERFACE ap_fifo port=in_stream
#pragma HLS INTERFACE ap_fifo port=out_stream
T a[UNO][DIM];
T b[DIM][UNO];
T out[UNO][DIM2];
assert(sizeof(T) * 8 == 32);
for (int i = 0; i < UNO; i++)
 readA_int: for (int j = 0; j < DIM; j++) {
 int k = i * DIM + j;
 a[i][j] = read_stream<T, U,
 TI,TD>(in_stream[k]); }

for (int i = 0; i < DIM2; i++) {
 read_B_int: for (int j = 0; j < DIM; j++) {
 int k = j + DIM * (i + 1);
 b[j][0] = read_stream<T,U,
 TI, TD>(in_stream[k]); }
 T sum = 0;
 Multiplier: for (int id = 0; id<DIM; ++id){
 sum += a[0][id] * b[id][0]; }
 out[0][i] = sum; }

converter:for (int j = 0; j < DIM2; j++) {
out_stream[j] = write_stream<T, U, TI,
 TD>(out[0][j], j == (DIM2 ‐ 1)); }
return; }

AXI_VAL is a structure which represents the sending
of data through the AXI bus.

The initial description has been validated in Vivado-
HLS environment by running various functional
tests. Obtained results have been checked against
those of the multiplication in the original software
application.

Synthesis
Once it has been verified that the software
description of the multiplication algorithm works
properly, the next step is to obtain an RTL
implementation. This requires synthesizing the C++
description.

Three different solutions have been generated. Each
of them with different optimization directives
applied. The accelerator is optimized using pipeline.
Table I summarizes the obtained results. The results
are for an accelerator module with DIM1=320 and
DIM2=160 on a Zynq-7020device.

 Latency
(cycles)

BRAM DSP FF LUT

Sol1 564644 3 4 294 316
Sol2 512966 3 4 306 365
Sol3 104646 3 4 271 305

Table 1. Synthesis results

Solution 1 corresponds to the synthesis of the C++
description without applying any directive. That is,
this solution does not include any optimization. In
Solution 2, pipeline directives are applied to all the
loops, except the one in which the multiplication is
performed (loop labeled Multiplier). Solution 3 is the
most optimized one since it applies the optimizations
of previous solution, but also applies pipeline to the
multiplication loop. Precisely this is the loop causing
the bottleneck in the matrix multiplication algorithm.

It is noted that the three solutions are similar in terms
of used resources. No differences are observed, as
expected, in the number of memory blocks and
DSPs. The differences in terms of latency (in cycles)
are significant. Solution 2 slightly improves Solution
1. For Solution 3, which apply pipeline to the
calculation loop, latency is significantly lower than in
Solutions 1 and 2.

Furthermore, concerning the use of hardware
resources, it is observed that Solution 2 requires
slightly more LUTs and flip-flops. This is due to the
inclusion of pipeline stages which increases the
number of required circuit elements. However, it is
noted that Solution 3 requires less LUTs and flip-
flops. The reason is that, although more pipeline is
added, the synthesis tool has achieved a better
optimization of the resulting hardware.

Figure 3 shows the latency, measured in clock cycles
for each of the three solutions. The impact of the use
of directives in the system performance is graphically
observed.

Figure 3. Response time of each implementation.

3. FACE RECOGNITION SYSTEM
DESIGN
Once a Pcore containing the description of the
hardware accelerator for facial recognition has been
generated with Vivado-HLS, the next step is the
design of a hardware platform incorporating it as
peripheral and the development of a software
application which makes use of it.

The system has been implemented in the Xilinx
ZedBoard development board, which incorporates a
Zynq-7000 SoC device. The hardware platform
consists of five components: the ARM processor, the
AXI buses, a timer, a DMA controller and the IP
accelerator module. Figure 4 outlines the architecture
of the system.

The AXI buses are responsible of the communication
between the various components of the circuit. The
ARM processor, in the PS in Figure 4, runs the
software part of the face recognition system. It sends
the data to the hardware accelerator. In order to
configure the processor, it is needed to enable the
S_AXI_ACP interface to communicate with the bus
for sending and receiving data.

The timer is used to make performance analysis of
the proposed system. Specifically, it is used to
measure the number of clock cycles consumed by the
accelerator module, in order to compare it with the
number of cycles without using accelerator.

The DMA is responsible of the communication
between the PS and the IP accelerator module. It
provides the input matrices to the hardware
accelerator and receives the resulting matrix from it.
Also it must make this data available to the processor
so that it continues its execution. The DMA operates
in burst mode. To reduce the memory access time,
the maximum number of data to be transmitted in
each burst has been set to 256 Bytes.

The starting point for the design of the embedded
system is the OpenCV’s baseline face
detection/recognition application [Ope10]. The
OpenCV baseline face recognition application was
modified in order to adapt it to a standalone
embedded face recognition system. We have
considered that the majority of embedded
environments are capable of running C applications

with or without operating system (OS) support. This
means that the resulting application code has to be
compatible to C compilers and, at the same time it
should be platform independent.

Figure 4. Hardware platform

Another consideration made is the fact that most of
the SoC have no floating point support. Because of
this, the developed application uses integer
operations instead of floating point operations in
order to preserve the generality of the application for
the embedded system world. Additionally other
modifications were made to accelerate the
algorithms. Finally, the part of the software
application related to the matrices multiplication,
needed for projecting the image, has been replaced.
This calculation is performed by the IP accelerator
module, so it has been necessary to develop different
functions to work directly with the system
peripherals (DMA and the IP module).

Once the IP module has completed the execution and
the DMA has transferred the result of the
multiplication, the processor continues running the
software application.

4. FACE RECOGNITION SYSTEM
EVALUATION
To validate the developed system and to evaluate its
performance, different tests have been carried out.
Specifically, two types of tests have been made, one
with an all-software recognition system, which does
not include hardware accelerator, and the other with
the system that includes the hardware accelerator.
The three implementations of the hardware
accelerator described in Section 2 have been tested to
experimentally evaluate how optimizations affect the
final result.

We have used two image databases containing
images of different sizes in order to check the
acceleration in relation to the size of the matrices to
be multiplied. One database is the AT&T face
databases [Att02] (resolution of 92×112 pixels). In
AT&T database there are 10 grayscale images for
each of the 40 individuals who compose it. The

second database is Faces94 [Spa94] (resolution of
180×200 pixels). It contains 3040 color images of
faces divided into 20 images for each of the 152
individuals who compose it.

Tests were carried out on four types of systems: the
purely software embedded face recognition system
and the three hardware platforms with accelerator, as
mentioned previously. These three solutions are the
hardware acceleration module without optimization
(not including pipeline stages), the module that
includes pipeline stages in all loops except the
multiplication one, and the module including pipeline
in all loops.

Figure 5 shows the results obtained for Faces94
database. We can see the impact produced when
inserting pipeline on the accelerator, which makes
this operation even faster. For the small images
(ATT), the multiplication is about 11 times faster,
and for the large images (Faces94) it is 17 times
faster.

Figure 5. Acceleration measures (in clock cycles)

5. CONCLUSIONS
This communication described an embedded system
that accelerates the face recognition process in
images or videos. The implemented face
identification system is suitable for applications
requiring real time because the time response is
deterministic.

6. ACKNOWLEDGMENTS
This work was supported in part by Ministerio de
Economía y Competitividad under the Project
TEC2014-57971-R, co-financed by FEDER.

7. REFERENCES
 [Att02] AT&T Laboratories Cambridge, Database of

Faces. [On-line] http://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html.

[Ope10] OpenCV Reference Manual. 2010.

[Spa94] Spacek, L. Collection of Facial Images:
Faces94. [On-line] http://cswww.essex.ac.uk/
mv/allfaces/faces94.html.

[Xil14] Xilinx. Vivado Design Suite User Guide
High-Level Synthesis. UG902 (v2014.1) May 30,
2014.

ARM
processor DDR

memory
controller

ACP GP0

Processing System (PS)

DMA

IP accelerator
module

Timer

AXI4Lite Bus

AXI Bus

Programmable logic (PL)

AXIStream Bus Z
yn

q
70

00
 F

P
G

A

